File Information

File: 05-lr/acl_arc_1_sum/cleansed_text/xml_by_section/abstr/06/p06-2034_abstr.xml

Size: 1,234 bytes

Last Modified: 2025-10-06 13:45:05

<?xml version="1.0" standalone="yes"?>
<Paper uid="P06-2034">
  <Title>Sydney, July 2006. c(c)2006 Association for Computational Linguistics Discriminative Reranking for Semantic Parsing</Title>
  <Section position="2" start_page="0" end_page="0" type="abstr">
    <SectionTitle>
Abstract
</SectionTitle>
    <Paragraph position="0"> Semantic parsing is the task of mapping natural language sentences to complete formal meaning representations. The performance of semantic parsing can be potentially improved by using discriminative reranking, which explores arbitrary global features. In this paper, we investigate discriminative reranking upon a base-line semantic parser, SCISSOR, where the composition of meaning representations is guided by syntax. We examine if features used for syntactic parsing can be adapted for semantic parsing by creating similar semantic features based on the mapping between syntax and semantics. We report experimental results on two real applications, an interpreter for coaching instructions in robotic soccer and a natural-language database interface. The results show that reranking can improve the performance on the coaching interpreter, but not on the database interface.</Paragraph>
  </Section>
class="xml-element"></Paper>
Download Original XML