File Information
File: 05-lr/acl_arc_1_sum/cleansed_text/xml_by_section/abstr/03/w03-1807_abstr.xml
Size: 1,365 bytes
Last Modified: 2025-10-06 13:43:12
<?xml version="1.0" standalone="yes"?> <Paper uid="W03-1807"> <Title>Extracting Multiword Expressions with A Semantic Tagger</Title> <Section position="1" start_page="0" end_page="0" type="abstr"> <SectionTitle> Abstract </SectionTitle> <Paragraph position="0"> Automatic extraction of multiword expressions (MWE) presents a tough challenge for the NLP community and corpus linguistics. Although various statistically driven or knowledge-based approaches have been proposed and tested, efficient MWE extraction still remains an unsolved issue. In this paper, we present our research work in which we tested approaching the MWE issue using a semantic field annotator. We use an English semantic tagger (USAS) developed at Lancaster University to identify multiword units which depict single semantic concepts. The Meter Corpus (Gaizauskas et al., 2001; Clough et al., 2002) built in Sheffield was used to evaluate our approach. In our evaluation, this approach extracted a total of 4,195 MWE candidates, of which, after manual checking, 3,792 were accepted as valid MWEs, producing a precision of 90.39% and an estimated recall of 39.38%. Of the accepted MWEs, 68.22% or 2,587 are low frequency terms, occurring only once or twice in the corpus. These results show that our approach provides a practical solution to MWE extraction.</Paragraph> </Section> class="xml-element"></Paper>