File Information

File: 05-lr/acl_arc_1_sum/cleansed_text/xml_by_section/abstr/02/p02-1059_abstr.xml

Size: 1,065 bytes

Last Modified: 2025-10-06 13:42:30

<?xml version="1.0" standalone="yes"?>
<Paper uid="P02-1059">
  <Title>Supervised Ranking in Open-Domain Text Summarization</Title>
  <Section position="1" start_page="0" end_page="0" type="abstr">
    <SectionTitle>
Abstract
</SectionTitle>
    <Paragraph position="0"> The paper proposes and empirically motivates an integration of supervised learning with unsupervised learning to deal with human biases in summarization. In particular, we explore the use of probabilistic decision tree within the clustering framework to account for the variation as well as regularity in human created summaries.</Paragraph>
    <Paragraph position="1"> The corpus of human created extracts is created from a newspaper corpus and used as a test set. We build probabilistic decision trees of different flavors and integrate each of them with the clustering framework. Experiments with the corpus demonstrate that the mixture of the two paradigms generally gives a significant boost in performance compared to cases where either of the two is considered alone.</Paragraph>
  </Section>
class="xml-element"></Paper>
Download Original XML